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ABSTRACT 

In future network-centric warfare environments, teams of autonomous vehicles 

will be deployed in a coorperative manner to conduct wide-area intelligence, surveillance 

and reconnaissance (ISR) missions in a tactical environment. The operational range of 

these survey vehicles is usually limited by the line-of-sight (LOS) and/or bandwidth 

constraints of the communication system. To increase the operational range and to allow 

real-time transmission of data back to the command station, autonomous vehicles 

configured with high bandwidth communication system are positioned between the 

command station and the survey vehicles acting as communication relay vehicles and 

flying sensors. This will allow the survey vehicles to transfer their data back to the 

command station on the move, thus improving the efficiency of the missions.   

In this thesis, an autopilot guidance and control algorithm was developed that will 

allow the relay vehicles to reposition themselves autonomously to maintain an optimal 

loitering flight path to maximize the quality of the communication link between the 

command station and survey vehicle. The main contributions of this thesis are two-fold. 

First, a communication propagation model was developed to predict the signal-to-noise 

(SNR) ratio of the communication link, which is used as a reference SNR signal for the 

UAVs. Second, the communication model was then integrated into a feedback control 

loop to formulate a new real-time adaptive controller, which is based on an extremum 

seeking approach with a gradient-based controller, to drive the relay vehicle to an optimal 

loitering path using SNR as the cost function.  
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I. INTRODUCTION 

A. MOTIVATION 

In future network-centric warfare environments, teams of autonomous vehicles 

will be deployed in a cooperative manner to conduct wide-area intelligence, surveillance, 

and reconnaissance (ISR) missions. When operating in a tactical environment without 

satellite communications, the operational range of these survey vehicles is usually limited 

by the line-of-sight (LOS) and/or bandwidth constraints of the communication system. 

The operational range can be extended if there are other autonomous vehicles positioned 

between the command station and the survey vehicle, acting as relay vehicles capable of 

high bandwidth transmission to the command station. This is particularly useful in 

applications where the survey vehicles are underwater and/or surface vehicles and their 

range extended by an unmanned aerial vehicle (UAV) relay node orbiting overhead. 

The data gathered from the survey vehicles is usually of high priority and time 

critical. It is critical that these data is transferred in real-time back to the command station 

for processing into actionable information for decision makers. Relay vehicles configured 

with high bandwidth transmission will allow survey vehicles to transfer their data while 

on the move, thus improving the efficiency of the missions. 

Researchers at the Unmanned Systems Lab of the Naval Postgraduate School 

(NPS) are developing autopilot guidance and control algorithms that will allow the relay 

vehicles to reposition themselves autonomously to maintain an optimal loitering flight 

path to maximize the quality of the communication link between the command station 

and survey vehicles [1]. 

B. TACTICAL NETWORK TOPOLOGY (TNT) PROGRAM 

The current research is supported in part by the TNT Cooperative Field 

Experimentation Program, a joint program between the United States Special Operations 

Command (USSOCOM), its component commands, and several government laboratories, 
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including the Unmanned Systems Lab at NPS. The program focuses on the exploration 

and demonstration of new technologies applicable to the military with special focus in the 

area of autonomous vehicle and target identification/tracking. Flight tests are conducted 

quarterly at the Center of Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) 

facility located at McMillan Air Field in Camp Roberts, California.   

C. THESIS OBJECTIVES 

There are two objectives to this thesis. The first objective is to develop a 

propagation model capable of predicting the quality of the communication link. This 

propagation model is to be used to analyze the variation of free-space propagation loss, 

antenna pattern loss, and the effect of bank angle on the signal-to-noise ratio (SNR) of the 

communication link. The second objective is to use the propagation model to develop a 

new real-time adaptive controller, by means of extremum seeking techniques, to drive the 

UAV to an optimal loitering flight path using SNR as the cost function. 
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II. LITERATURE REVIEW 

A. CONTROL FOR HIGH BANDWIDTH COMMUNICATIONS LINK 

Numerous optimization control techniques are available to control a UAV to 

maintain an optimal loitering flight path and maximize the communication link quality 

between the command station and the survey vehicle.  

In [2], the author uses an attraction to weaker SNR values and the relative 

geographical position of the ground nodes to re-position the relay node. The relay node 

measures the SNR between itself and other subsystems and reacts by moving towards the 

subsystem with a lower SNR value. Without knowledge of the environment or an 

accurate propagation model, the use of relative geographical positions alone to control 

the UAV to an optimal loitering flight path, may not be the right approach. The 

transmission path between the transmitter and the receiver can vary from a simple line-

of-sight (LOS) path to a highly unpredictable path that can not be easily modeled. 

An alternative is to use the extremum seeking control technique (see below). In 

[3], the authors used a Lyapunov guidance vector field (LGVF) controller based on 

extremum seeking methods to form an optimal communication chain of unmanned 

aircraft. 

1. Introduction to Extremum Seeking Control 

Extremum seeking control is an extension of classical adaptive control technique. 

However, unlike the classical adaptive control method, extremum seeking does not 

require a model. Instead, it uses the gradient of the defined cost function (e.g., SNR) to 

drive the set point of a dynamic system to its globally optimal location. Extremum 

seeking is desired when the set point of a system is unknown and/or varies with different 

conditions in a complex way that is known to have an extremum point, and the objective 

function of the system is to select the set point to keep the output at the extremum point. 
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Extremum seeking is particularly useful in applications where there are no reliable 

models such as in the area of fluid flow, combustion, and biomedical systems.  

Back in the 1950s and 1960s, a significant effort was invested into the research on 

extremum seeking controllers. However, the resulting controllers turned out to be very 

complex and expensive to implement at that time. Also, it was not possible to guarantee 

the stability of the system although the extremum seeking controllers performed quite 

well when put into practice. As a result, research into extremum seeking died down and it 

only regained its popularity in the 21st century after Krstic published articles on the 

stability criterion for an extremum seeking system [4]. Since then, extremum seeking 

controllers have been used in applications such as compressor instabilities in jet engines, 

combustion instabilities, thermoacoustic coolers, beam matching in particle accelerators, 

and many more [5].   

2. Extremum Seeking – How Does it Work? 

Figure 1 shows the standard extremum seeking control architecture. A sinusoidal 

perturbation signal ( sin( )tα ω ) is injected into the plant to get an estimate of the gradient 

information of the cost function. The output of the plant is given in the form: 

 ( )
" 2* *( )

2
JJ Jθ θ θ= + −   (2.1) 

The objective of the algorithm is to make the estimation error * ˆθ θ θ= −%  as small 

as possible so that the output is driven to its minimum *J . The output signals ( )J θ  are 

applied to a high-pass filter which removes the constant offset, demodulated by 

multiplication with sin( )tω , and passed through an integrator which takes out the high 

frequency signal terms. The final output is a gradient estimate of the plant of the form: 

 
"

2
k fαθ θ≈ −&% %  (2.2) 

When the gradient θ&%  goes to zero, the estimation error θ%  goes to zero and the 

plant output is driven to its minimum *J . The formal discussion on extremum seeking 

controllers, which includes stability proofs, can be found in [4].   



 5

 

Figure 1.   Perturbation-based Extremum Seeking Architecture [From Ref. [5]]. 

B. AUTONOMOUS VEHICLE COMMUNICATIONS NETWORKS 

Electromagnetic wave propagation over a wireless communication network is 

random, unreliable, and attenuated by many loss mechanisms. The transmission path can 

vary from a simple LOS path to one that is highly attenuated by the ever-changing 

environment such as mountains and foliage. It is difficult to predict or accurately model 

the path loss, received signal power, and SNR at the receiver, especially if the receiver is 

moving.  

If the receiver signal power is lower than the receiver’s sensitivity, the receiver 

might not be able to detect and demodulate the messages, resulting in link breakage. The 

link margin measures the difference (in dB) between the received power and the 

receiver’s sensitivity. The receiver’s sensitivity is a characteristic of the system and is 

provided by the system’s manufacturer.  

 r sensLinkMargin=P -R  (2.3) 

 

θ  

*θ  *J  

sin( )tα ω  sin( )tω  

θ̂  

( )
" 2* *( )

2
JJ Jθ θ θ= + −  

s
s h+

 k
s

−  
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A high link margin is preferred as this means that the received power is higher 

than the receiver’s sensitivity and the receiver should be able to detect the messages. 

In most communication network systems, it is desirable to maximize the received 

signal power. The link quality of the communication network is not dependent on the 

received signal power alone. It is also dependent on the noise level of the system. There 

are various sources of noise in the communication system which can come from the 

environment and system devices. If the noise power is near or higher than the received 

signal power, it is difficult for the receiver to detect the signal among the noise-

contaminated received signal. Hence, besides having a large signal power, it is desirable 

to have a low noise power.  

Signal-to-noise ratio (SNR) is a measure of the ratio between the received power 

and the noise power. The higher the SNR, the larger the signal level as compared to the 

noise level, resulting in a lower bit error rate in signal reception and better link quality.  

 ReceivedSignalPowerSNR
NoisePower

=  (2.4) 

The SNR is related to channel capacity by the Shannon-Hartley theorem [6]. The 

theorem states that the theoretical maximum channel capacity (C, in bits per second) is 

proportional to the SNR and the bandwidth (W, Hz) of the channel as shown in Equation 

2.5.  

 ( )2log 1C W SNR= +  (2.5) 

Assuming that the capacity of the channel is fully utilized (i.e., capacity equals to 

the throughput), an increase in SNR will lead to an increase in the throughput of the 

channel.    

1. Propagation Mechanisms 

The mechanisms behind electromagnetic wave propagation are diverse, but can 

generally be attributed to direct line-of-sight (LOS) path, reflection, deflection, and 

scattering [7]. The losses associated with these mechanisms are briefly discussed in this 

section and the propagation models, which describe these mechanisms, are discussed in 

the next sections. 
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a. Friis Free Space Equation 

The free space power received by the receiver antenna can be described by 

the Friis free space equation. 

 
( )

2

2 24
t t r

r
PG GP

d L
λ

π
=  (2.6) 

where Pt is the transmitted power, Gt is the transmitter gain, Gr is the receiver gain, λ  is 

the wavelength in meters, d is the transmitter-receiver separation distance in meters, and 

L is the system loss factor not related to propagation. L is assumed to be 1 for a lossless 

system. 

Equation (2.6) is used to compute the free space path loss when the 

transmitter and receiver have a clear, unobstructed line of sight path between them. The 

equation shows that the received power is inversely proportional to the square of the 

separation distance. 

The free space path loss, which represents signal attenuation as a positive 

value measured in dB, is defined as the difference (in dB) between the transmitted power 

and the received power given by equation (2.7). The antenna gains are assumed to have 

unity gains in the path loss equation. 

 Lp [dB] = [ ] 32.4 20log( )[ ] 20log( )[ ]r tP P dB f MHz d km− = + +            (2.7) 

The free space path loss is generally the most important loss parameter 

affecting wave propagation in the radio channel. 

The Friis free space equation can be written by combining equations (2.6) 

and (2.7) as follows 

  [ ]r t t r pP dB P G G L= + + −          (2.8) 

b. Antenna Gain Patterns 

Generally, the antenna gains are not constant around the azimuth and 

elevation of an antenna. Figure 2 shows the antenna gain patterns of a vertically polarized 
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sector antenna from Laird Technologies (SA24-120-9). In the elevation direction, the 3 

dB beam width is ± 15 degrees and the gain drops off sharply after ± 15 degrees, 

reaching -22 dB at a 30 degree angle. The received power will be significantly lower if 

the LOS path is outside the beam width of the antenna, which indicates a loss of coverage 

from the antenna. The attenuation can easily be computed by doing a ray-tracing of the 

wave propagation path between the transmitter and the receiver to determine the angle of 

the departure/arrival of the ray-path.  

The antenna gain pattern loss (LAP) can be accounted for in the Friis free 

space equation by adding a term LAP to equation 2.8 as follows, 

 [ ]r t t r p APP dB P G G L L= + + − −  (2.9) 

 90o
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 0o180o
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Figure 2.   Antenna Pattern for Vertical Polarized Sector Antennas from Laird 

Technologies (Model SA24-120-9). 
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c. Reflection 

Reflection occurs when a propagating electromagnetic (EM) wave hits an 

object that has very large dimensions when compared with the wavelength of the 

propagating EM wave. Reflection usually occurs off the earth’s surface, mountains, and 

buildings.  

When the propagating EM waves hit the reflective surface, part of the 

energy is transmitted into the second medium, part of the energy is reflected back to the 

air, and a small part of the energy is loss in absorption. The reflection follows the Snell’s 

law of reflection. The amplitude and phase of the reflected wave depend on a number of 

variables, including dielectric constant of the surface, frequency, polarization, and angle 

of incidence [7]. 

d. Diffraction 

Diffraction occurs when the propagating EM wave hits a surface that has 

sharp irregularities (edges). Secondary waves will originate from the sharp irregularities 

and propagate throughout the free space and behind the obstacle, bending waves around 

the obstacle (Huygen’s Principle). Diffraction allows the receiver to receive signals 

outside the LOS path with the transmitter. 

Generally, it is difficult to model diffraction losses accurately as it requires 

a detailed knowledge of the terrain profile and the computation is difficult from a 

mathematical perspective. Expressions for diffraction losses for many simple cases are 

available and they are usually theoretical approximations modified by empirical 

corrections. Ref. [7] contains a description of some simple models developed to estimate 

diffraction losses.  

e. Scattering 

Scattering occurs when the propagating EM wave hits particles with 

dimensions that are small compared to the wavelength, and where the number of particles 

per unit volume is large. Example of such particles would be snow, fog, and rain. 
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Scattering losses become a significant source of losses (where attenuation is more than 1 

dB) above 10 GHz and is not significant at 2.4 GHz. Scattering losses from fog and snow 

become noticeable above 30 GHz and for rain attenuation at around 10 GHz [7].      

2. Propagation Models 

Propagation models are primarily used to predict the path loss, received signal 

strengths, and from there the SNR of the communication system. There are many 

propagation models available such as the Two-Ray Model, Log-distance Path Loss 

Model, Longley-Rice Model, and the Hata Model [7]. These models vary widely in their 

approach, application, complexity, and accuracy. Generally, these models can either be 

categorized into analytical or empirical models, or a combination of both.  

The empirical model is based on curve fitting or an analytical expression that re-

creates a set of measured data. While the empirical model has the advantage of taking 

into account all propagation factors through actual field measurements, the validity of the 

model in environments other that those used to derive the model is always an issue. The 

model is considered only useful in the new environment if measurements are taken and 

the model is validated in the new environment. 

The analytical model uses the ray-tracing technique and terrain geometry (from 

aerial photographs, Geographical Information System (GIS) databases, or other similar 

databases) to deterministically compute the path loss of the propagation channel. Using 

the ray-tracing technique, it is possible to determine all ray-paths of the EM waves and 

their field properties (amplitude, phase, and time of arrival) between the transmitter and 

receiver. The received signal intensity is the summation of the signal intensity for each 

ray-path. The accuracy of the analytical model depends on the resolution of the terrain 

database.  

C. PROPOSED THEORETICAL PROPAGATION MODEL 

Electromagnetic wave propagation over a wireless communication network is 

extremely random and is driven by the many loss parameters described above as well as 

the terrain profile. For a start, it is difficult to account for and model all the loss 
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parameters and the terrain accurately. In this project, the author is going to develop a 

SNR model that is suitable for application at hand. The model will focus on two 

dominant loss parameters, namely the LOS path loss and the antenna gain pattern loss. In 

addition, the author is going to model the effect of the UAV orientation on the SNR. The 

ray-tracing technique will be used to compute the LOS path between the transmitter and 

receiver. The terrain is assumed to be flat with no features. 
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III. FLIGHT CONTROL SYSTEMS 

A. SIG RASCAL 110 AIRPLANE 

The Rascal 110 airplane (shown in Figure 2) is a hobby-class prefabricated 

airframe with ample room for additional avionics in the cabin. This highly configurable 

system allows the installation of additional avionics to support testing of new hardware, 

algorithms, and technical solutions [8]. 

 
Figure 3.   Rascal Unmanned Aerial Vehicle (UAV)  

The Rascal airframe was converted at NPS into a fully autonomous UAV 

equipped with the following: 

• Cloud Cap Technology Piccolo+ autopilot avionics 

• PC-104 onboard computers (x2) 

• 900 MHz radio modems for ground control station (GCS) link 

• 2.4 GHz Wave Relay wireless networking card 

• Single-axis high resolution camera 

• GPS and pilot-static probe 

• Pelco network digital video server 
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B. WAVE RELAY WIRELESS MESH NETWORK 

In addition to the 900 MHz wireless link dedicated to the safe operation of 

multiple UAVs from one ground control station, a second wireless link, namely the Wave 

Relay wireless networking system operating in a 2.4 GHz 802.11 mesh network, was 

added to the Rascal UAV in FY08. The second wireless link expands the capability of the 

UAV and allows for the development and execution of various non-critical and/or real-

time applications on the UAV.  

On the Rascal UAV, this wireless link is facilitated by a Wave Relay radio 

mounted on a single board computer card. The radio is connected to a 3 dB omni-

directional antenna mounted on the belly of the UAV for transmitting and receiving 

messages. On the GCS, the wireless link is facilitated by a Wave Relay radio router as 

shown in Figure 2. The Wave Relay router on the GCS is paired with three 9 dB sector 

antennas to provide 360 degrees of azimuth coverage.  

The specification on the Wave Relay radio as provided by the manufacturer states 

that the transmit power of the Wave Relay radio is around 28 dB and the receiver 

sensitivity is around -74 dBm. In a normal environment, a noise floor of around -95 dBm 

is assumed, but it can be worse than that depending on the operating environment.    

The datasheets for the antenna used in this project are attached as Appendix A.  

 

Figure 4.   Wave Relay QAUD Radio Router [From [9]]. 
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IV. MODELLING 

A. SNR MODEL (MULTI-NODES) 

The SNR model shown in Figure 5 was developed using MATLAB Simulink 6.3. 

The inputs to the model are the UAV flight trajectory and the location of the ground 

nodes. The model outputs are the received power, SNR, and link margin at the receiver. 

The model computes the LOS path between the UAV and the ground node, and from 

there the model computes the free-space LOS path loss, antenna pattern loss, and the 

effect of the UAV bank angle on the SNR. The terrain is assumed to be flat with no 

features. 

The current model accepts up to two ground nodes and one UAV. However, the 

model can be easily modified to accept more ground nodes and UAVs. The measurement 

units used in the model are System Internationale (SI) units.     

The SNR model consists of the following four sub-models: 

• UAV Dynamic Model 

• LOS Path Loss Model 

• Antenna Pattern Loss Model 

• Link Budget Model 

The function of each sub-model will be briefly described below. 

1. UAV Dynamic Model 

The UAV dynamic model (Figure 6) models the flight trajectory of the UAV. The 

inputs are speed and heading rate and the outputs are position, velocity, heading, and 

bank angle of the UAV in flight.  

The position and velocity are defined in the east-north-up (x-y-z) local tangent 

plan coordinate system. The heading is defined with 0 degrees east and rotates anti-

clockwise. The positive bank angle corresponds to the left wing (seen from front) being 

raised above the horizon plane. 
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Figure 5.   SNR (Multi-Nodes) Model. 
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Figure 6.   UAV Dynamic Model. 

 
 

2. LOS Path Loss Model 

The LOS path loss model shown in Figure 7 computes the difference between the 

transmitted power and received power (excluding the effect of antenna gain) of the LOS 

path. The path loss is computed using the Friis free space equation as shown below. 

  

 32.4 20log( )[ ] 20log( )[ ]PPathLoss L f MHz d km= = + +  (4.1) 
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Figure 7.   Path Loss Model.  

3. Antenna Pattern Loss Model 

The antenna pattern loss model (Figure 8) computes the departure and arrival 

angles of the LOS path and then determines the antenna pattern losses using a look-up 

table. 

 
Figure 8.   Antenna Pattern Loss Model. 

The arrival angle is affected by the bank angle of the UAV. As shown in Figure 9, 

the bank angle has the effect of moving the incident ray path along either side of the  
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plane and increases or decreases the angle of arrival. The bank angle effect is “greatest” 

when the UAV is perpendicular to the ground node and has no effect when the UAV is in 

head-on or tail-chase scenarios.  

 
Figure 9.   UAV Bank Angle Effect on the Arrival Angle. 

The effect of the bank angle on the arrival angle is accounted in the model by a 

“sin” term as shown below:  

 * ( )BankAngleEffect Sinφ ϕ λ= −  (4.2) 
 

where φ  = UAV’s bank angle 

ϕ  = bearing, angle between positive x-axis and the ground projection of 

the LOS ray path. 

 λ  = UAV’s heading 

 

Figure 10.   Geometry Showing the Definition of Bearing,ϕ  
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The antenna pattern is usually obtained through field measurements of the 

antenna. In this project, the author stored the antenna gain (obtained from the 

manufacturer’s datasheet) in a look-up table, and the gain at particular departure and 

arrival angles are obtained from the look-up table using linear interpolation. It is also 

possible to do curve-fitting to obtain an analytic expression for the antenna pattern. The 

author tried this method and compared the results with the look-up table. It was found 

that the error between the two methods is not significant.   

4. Link Budget Model 

The link budget model seen in Figure 10 computes the received power (Pr), 

signal-to-noise ratio (SNR), and link margin at the receiver. In addition, the SNR 

excluding the antenna pattern loss is also computed.  
 

 
Figure 11.   Link Budget Model. 
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The equations used in the model are as follows: 

From equation 2.9, 

 [ ]r t t r P APP dB P G G L L= + + − −  (4.3) 
 
 From equation 2.4, 
  
 [ ] rSNR dB P NL= −  (4.4) 
 
 From equation 2.3, 
 arg [ ] r sensLinkM in dB P R= −  (4.5) 
  
 The SNRPL excludes losses due to antenna pattern effect and only account for the 
LOS path loss 
   
 [ ]PL t t r PSNR dB P G G L NL= + + − −  (4.6) 

 

where Pt = transmit power (28 dBm)   

 Gt = transmitter antenna gain (9 dB) 

 Gr = receiver antenna gain (3 dB) 

 Lp = LOS path loss (dB) 

 LAP = antenna pattern loss (dB) 

 NL = system noise level (-95 dBm) 

 Rsens = receiver sensitivity (-74 dBm) 

The transmit power, antenna gains, noise level, and receiver sensitivity are 

characteristic of the radio and antenna systems and are obtained from the system’s 

datasheet. 

B. RASCAL SNR MODEL 

The Rascal SNR model (Figure 11) is similar to the above SNR model except that 

the inputs are modified to accept actual flight test data from the Rascal’s telemetry.  
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A first-order filter is implemented to filter off the high frequency variations in the 

SNR readings. The filtered SNR data is used as input to the extremum seeking algorithm. 

The author tried using second-order filters and a weighted moving average (20 points) to 

filter off the high frequency variation, but it was found that the first-order filter performs 

better and is more suitable for the author’s application.    

 C. SNR MAP 

The SNRmap.m is a script file written in MATLAB. The SNR map shows the 

variations of SNR in X-Y coordinates for a stationary (non-dynamic) UAV. The altitude, 

heading, and bank angle of the UAV are fixed before the run and can not be changed 

during the run. Figure 12 (X-Y Plane) and Figure 13 (X-Z Plane) show the SNR map for 

a typical run. The SNR map is very useful for plotting contour maps.   
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Figure 12.   RASCAL SNR Model. 
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Figure 13.   SNR Map (X-Y View). 

 
Figure 14.   SNR Map (X-Z View). 
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V. SNR MODEL VERIFICATION FLIGHT TEST 

A. BACKGROUND 

 The SNR model verification flight test with the Rascal UAV was conducted at 

McMillan Air Field in Camp Roberts, California on August 1, 2008. The primary 

objective was to collect SNR measurements between the Rascal UAV and a ground 

control station (GCS) node at different locations and altitudes. The SNR measurements 

obtained from the flight test will be used to validate the mathematical SNR model. 

The flight test data were obtained from two separate sources. The SNR data was 

obtained by the SNR logger from the Wave Relay network while the UAV flight 

parameters (such as latitude/longitude, altitude, roll, yaw and pitch) were obtained from 

the Piccolo onboard the Rascal UAV. These two sources of data were synchronized using 

the time stamp found on both data sets. For plotting purposes, the position of the GCS 

node is fixed as the origin of the local tangent plane (east-north-up) coordinate system.  

B. SET-UP  

The set-up for the flight test was as follows: 

Ground Control Station Node 

Antenna: 3 x 9 dB vertically polarized sector antenna (SA24-120-9)  

Position1:  35.7167 (lat) / -120.7648 (lon) (refer to Figure 12) 

Altitude1: 272m (above mean sea level) 

Rascal UAV  

Antenna: 2.2 dB omni-directional antenna (HG2402RD-RSF)  

Flight Paths: As shown in Table 1 and Figure 12 

 

                                                 
1 Extracted from Google Earth. 



 26

Table 1.    Flight Paths of Rascal UAV during Flight Test. 

 

 
Figure 15.   Location of GCS and Rascal Flight Paths during Flight Test [From Google 

Earth]. 

Path Description Duration (sec) 
A 2 x anti-clockwise circular orbit at altitude 560m 145 
B 2 x anti-clockwise circular orbit at altitude 560m 150 
C 1.5 x anti-clockwise circular orbit at altitude 650m 130 
D 1.5 x anti-clockwise circular orbit at altitude 650m 100 
E 1 x anti-clockwise circular orbit at altitude 650m 100 
F 1.5 x anti-circular orbit at altitude 500m 140 

F 2 x anti-circular orbit at increasing altitude from 500m to 
700m 150 
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C. FLIGHT TEST RESULTS AND ANALYSIS 

1. SNR Variation with Distance 

Figure 15 (3D) and Figure 16 (2D) show the SNR measurements recorded on the 

GCS node. From these figures, it is observed that the SNR generally decreases with the 

radial distance between the UAV and GCS in paths A, B, C and D of the flight trajectory. 

However, at paths E, F & G nearer to the GCS (radial distance < 350 m), there are some 

“unusual” fluctuations in the SNR reading. These fluctuations may be due to the 

multipath effect of the environment and/or the UAV flying outside the main beam width 

of the GCS antenna which affects the received power.  

 

 
Figure 16.   Actual SNR Readings along the Rascal Flight Trajectory (3D map) Obtained 

during Flight Test. 
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Figure 17.   Actual SNR Readings along the Rascal Flight Trajectory (2D map in east-

north) Obtained during Flight Test. 

 

2. SNR Variation with Altitude 

Figure 17 shows the SNR variation with altitude for paths B and C. In paths B and 

C, the UAV flew the same circular path except for the difference in altitude of 100m. It is 

observed that the SNR does not vary significantly with a slight change in altitude when 

compared with radial distance. At a large radial distance, the range, arrival, and departure 

angles of the ray path do not change significantly with altitude and hence the losses and 

signal-to-noise ratios will be similar. 
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Figure 18.   Variations of SNR Readings with Altitude at Paths B and C of the Flight Trajectory.   
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3. SNR Variation with GCS Antenna Pattern 

Figure 18 illustrates the effect of the GCS antenna pattern on SNR readings on 

paths E and F of the flight trajectory. If the radial distance between the UAV and the 

GCS is short (< 300m @ altitude > 500m), the UAV is likely to be flying outside the 15 

deg main beam width of the GCS antenna. This effectively decreases the signal strength 

which leads to lower SNR values at the UAV. 
 

 
Figure 19.   Variations of SNR Readings with the GCS Antenna Pattern of the Flight 

Trajectory. 
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4. Comparison of Actual Flight Test Data with Mathematical SNR 
Model  

The position, heading, and bank angle information of the Rascal UAV were used 

to drive the mathematical Rascal SNR model. Figure 19 (3D) and Figure 20 (2D) show 

the SNR readings obtained from the mathematical SNR model. It is seen that at ranges far 

away from the GCS (paths A, B, C & D of the flight trajectory), the simulated SNR 

readings compared nicely with the actual SNR data from the flight test. The error of the 

simulated model with respect to the actual SNR test data in this region was within 15% 

(Figures 21 and 22). However, at ranges near the GCS (paths E, F & G of the flight 

trajectory) the error was more than 30%. The model predicted the UAV to be inside the 

GCS main beam width and hence should have had a reasonably high SNR in this region. 

However, the flight test reading showed otherwise. This inconsistency might be due to an 

inaccurate antenna pattern used in the model or because the signal attenuation at these 

regions is affected by multipath effect which was not accounted for in the model. 

 
Figure 20.   Simulated SNR Readings along the Rascal Flight Trajectory (3D map) 

obtained from Mathematical SNR Model.   
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Figure 21.   Simulated SNR Readings along the Rascal Flight Trajectory (2D map) 

obtained from Mathematical SNR Model.   
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Figure 22.   SNR Error (in %) between Simulated Reading and Actual Flight Data.  
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Figure 23.   SNR Error (in %) Plotted Against Time.   
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5. Comparison of Actual Flight Test Data with SNR Map   

The actual SNR data from the flight test were superimposed onto the SNR map as 

shown in Figures 23, 24, and 25. The SNR map was generated for the GCS node as the 

origin in east-north coordinates for a stationary UAV. The UAV altitude was set at 590m 

with zero bank angle and north heading.  

It is clearly seen that the actual SNR data followed the general trends of the SNR 

map. The maximum SNR from the flight test occurred near the maximum SNR predicted 

by the model.  

 
Figure 24.   Actual SNR Data Superimposed onto the SNR Map (East-North View). 

 
 
 
 
 
 
 

Actual 
SNR Data 



 35

 
Figure 25.   Actual SNR Data Superimposed onto the SNR Map (North View). 

 
Figure 26.   Actual SNR Data Superimposed onto the SNR Map (East View). 
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VI. EXTREMUM SEEKING CONTROL 

A. BACKGROUND 

The Unmanned Systems Lab in NPS has designed a real-time adaptive 

optimization algorithm which integrates an extremum seeking algorithm with a gradient-

based controller to obtain an optimal UAV loitering posture to maximize link quality 

between one UAV and two transmitting ground nodes. The works from the Unmanned 

Systems Lab (Refs. [1], [10], and [11]) are briefly discussed in this chapter.  

B. HARDWARE-IN-THE-LOOP (HIL) TEST 

The primary objective of the HIL simulation test is to verify the autopilot 

guidance and control algorithm in the laboratory before performing a flight test. The 

overall structure of the control algorithm is shown in Figure 26. 

 

 
Figure 27.   Diagram of Extremum Seeking-based Control Strategy for Autonomous UAV 

Control [From [10]] 

The design allows two transmitting ground nodes to send signals to the UAV. The 

mathematical SNR model is used to generate the simulated SNR reading between the 

UAV and the transmitting ground node. The UAV motion is simulated by a Piccolo 

simulator. The heading command is controlled based on the gradient value obtained from 
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the extremum seeking loop where a steady-state heading command is used to make the 

UAV orbit an optimal settling point with a constant radius.  

1. HIL Test Set-up  

The set-up for the HIL test is as follows: 

Ground Transmitting Node 

Location of Node 1:  3500 m (east), 114.5 m (north), 5 m (up) 

Location of Node 2: -1000 m (east), 614.5 m (north), 5 m (up) 

Rascal UAV 

Initial location: 10 m (east), 0 m (north), 600 m (up)   

Speed:   constant at 20 m/s  

Altitude:  constant at 600m 

The set-up for the test is designed in such a way that there is one location that 

gives the maximum SNR within the intersection area as shown in Figure 27. The 

maximum SNR point is located in the middle along the intersection lines between the two 

nodes. 

 
Figure 28.   3D Map of SNR Distribution from Two Antenna Nodes [From [10]] 
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2. HIL Test Results  

Initially, the UAV is located around the origin and starts moving in a circular path 

to the optimal point between the two nodes (refer to Figure 28). Near the optimal point, 

the UAV changes from a flying mode to an orbiting mode with a constant radius, 

following the commands from the steady-state heading rate. As expected, the optimal 

location lies on the line of the intersection area between the two nodes as shown in Figure 

29. 

 

Figure 29.   UAV Flight Trajectory with Respect to Two Antenna Nodes Based on 
Commands from Extremum Seeking Controller [From [10]] 
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Figure 30.   UAV Flight Trajectory Superimposed onto the 2D Projection of the SNR 
Distribution [From [10]] 

 

Figure 30 and Figure 31 show the SNR variation with time at Nodes 1 and 2 

respectively. As expected, SNR increases when the UAV is moving towards Node 1 and 

decreases when moving away from Node 2. The SNR settles around the optimal point 

that gives the best possible SNR (~32 dB) between the two nodes.   
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Figure 31.   SNR Variation with Time between the UAV and Node 1 [From [10]] 

 
Figure 32.   SNR Variation with Time between the UAV and Node 2 [From [10]] 
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The rate of change of the cost function is shown in Figure 32. It is seen that the 

rate of the SNR valve goes to zero as the UAV reaches the optimal point where the 

gradient value is zero. 

 
Figure 33.   Rate of Change of the Cost Function (SNR) with Time [From [10]] 
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VII. COMMUNICATION LINKS FLIGHT TEST 

A. BACKGROUND 

 The communication links flight test was conducted as part of the TNT 

experimentation program (TNT-09-01) at McMillan Air Field in Camp Roberts, 

California on November 20, 2008. The test was conducted with two stationary ground 

nodes and the Rascal UAV. The two ground nodes acted as the command station and the 

survey vehicle while the Rascal UAV functioned as the relay vehicle. The primary 

objective was to validate the designed onboard adaptive optimization algorithm that 

would drive the Rascal UAV to an optimal loitering flight path and maximize the SNR 

between the two nodes and the UAV.  

B. SNR DATA ACQUISITION & MANAGEMENT 

Currently, the onboard PC-104 computer on the Rascal is unable to extract the 

SNR value directly from the Wave Relay’s management message. As such, the SNR 

value will need to be extracted on the Linux machine (See Figure 34) located at the 

ground station and sent to the local host computer prior to transmission to the onboard 

computer. There is a switch on the local host computer which controls the type of SNR 

reading sent to the UAV. Currently, the switch caters for the following three types of 

SNR readings: 

1. Model-based SNR. This SNR reading is generated using the mathematical 

SNR model based on the current position and orientation of the UAV. 

2. Real-time SNR. This SNR reading is the actual SNR value computed by 

the Wave Relay radios. 

3. Mixed SNR. This SNR reading is based on the mathematical SNR model 

modified by the updated actual SNR reading from the Wave Relay radios. 
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The author intended to test the model-based and the real-time SNR during the 

flight test but due to lack of airspace time, only the model-based method was successfully 

carried out. 

 

Figure 34.   SNR Data Acquisition & Management Structure. 

In the setup, there were two ground nodes with the Rascal UAV acting as the 

relay node between the two nodes. As such, there will be two SNR data values - one from 

the link between the UAV and the GCS and the other from between the remote node and 

the UAV. Currently, the combined SNR sent to the onboard computer is computed by 

taking the average of the two SNR data values. 

C. SETUP  

The setup for the flight test was as follows: 

Ground Control Station (GCS) Node 

Antenna: 3 x 9 dB vertically polarized sector antenna (SA24-120-9)  

Position:  35.71675 (lat) / -120.76459 (lon) (refer to Figure 35) 

Altitude1: 272m (above mean sea level) 
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Remote Node 

Antenna: 3 x 9 dB vertically polarized sector antenna (SA24-120-9)  

Position:  35.73798 (lat) / -120.78639 (lon) (refer to Figure 35) 

Altitude1: 310m (above mean sea level) 

The remote was placed such that there was no line-of-sight between the GCS 

node and the remote node. 

Rascal UAV  

Antenna: 2.2 dB omni-directional antenna (HG2402RD-RSF)  

 

 
Figure 35.   Relative Location of the GCS node and Remote Node [From Google Earth]. 
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D. FLIGHT TEST RESULTS AND ANALYSIS 

1. UAV Flight Trajectory 

Figure 36 shows the flight trajectory of the UAV during the test. Initially, the 

UAV was in a holding pattern orbiting north of the GCS node. When the control 

algorithm was activated, the UAV started to move in the direction of the steepest increase 

in the SNR value. When the UAV reached the region of peak SNR, a steady-state 

heading command was passed to make the UAV orbit around the optimal point. It was 

observed that the orbit around the optimal point was elongated and not a circular path as 

predicted by the HIL simulation.  

 

Figure 36.   UAV Flight Path during the TNT Experimental Program. 

The circular lines shown in Figure 36 are contour lines of constant SNR. The 

contour lines, generated from the SNR map, show the predicted SNR in east-north 

coordinates for a stationary (non-dynamic) UAV with fixed altitude, heading, and bank 

angle.  
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2. SNR Variation along Flight Trajectory 

Figure 37 and Figure 38 show the actual SNR variation with time between the 

UAV (sender) and GCS node (receiver) and between the remote node (sender) and UAV 

(receiver) respectively. As expected, the algorithm drove the UAV to fly towards the 

optimal region that gave the best possible SNR (~23 dB) between the two nodes. 

 

Figure 37.   SNR Variation with Time between the UAV (sender) and GCS Node 
(receiver). 
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Figure 38.   SNR Variation with Time between the Remote Node (sender) and UAV 
(receiver). 

3. Comparison of Actual SNR data with Simulated SNR Data     

Figure 39 shows the actual average SNR data from the flight test while Figure 40 

shows the simulated average SNR data from the model. It is seen that the SNR for both 

figures are low at the holding area and move towards a higher value at the optimal region.  
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Figure 39.   Actual (Measured) Average SNR (dB) along Rascal Flight Trajectory 
obtained from Flight Test. 

 

Figure 40.   Simulated Average SNR (dB) along Rascal Flight Trajectory obtained from 
Flight Test. 
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Figure 41 shows the error between the actual and simulated SNR data. It is seen 

that the simulated SNR compared nicely with the actual SNR data from the flight test. 

The error of the simulated model with respect to the actual SNR data was within 15% 

except for the holding area where the error was more than 30%. The holding area is near 

the GCS node and the model is not accurate at this near range. Hence, the simulated SNR 

reading between the GCS and UAV tends to show a large error in the holding area.   

 

Figure 41.   SNR Error (in %) between Simulated Reading and Actual Flight Test Data. 



 51

VIII. CONCLUSIONS & FUTURE WORKS 

A. CONCLUSIONS 

In this thesis, a simple propagation model was developed to predict the link 

quality (SNR, received power, and link budget) of a communication link between the 

UAV and ground node. The model was then used to generate simulated SNR 

“measurements” for the hardware-in-the-loop (HIL) simulation of the extremum-seeking 

control algorithm. A flight test was carried out with the Rascal UAV on August 1, 2008, 

and the experiments successfully demonstrated the mathematical model’s ability to 

compute and predict the SNR for a given communication channel at McMillan Air Field 

in Camp Roberts, California. 

The next step saw the development of autopilot guidance and a control algorithm 

to drive the UAV to reposition itself autonomously in order to maintain an optimal 

loitering flight path to achieve the optimal communication link quality between two 

transmitting ground nodes. The real-time optimization algorithm was based on the 

extremum-seeking approach with a gradient-based controller. A flight test was carried out 

on November 20, 2008 and the experiments successfully demonstrated the effectiveness 

of the extremum-seeking control algorithm for controlling the UAV to the optimal flight 

path using model-based SNR.  

B. FUTURE WORK 

In this thesis, the ground nodes were assumed to be stationary to simplify the 

problem. The next logical goal would be to remove the assumption and extend the SNR 

model and extremum-seeking control algorithm to accept moving ground nodes. 

Others areas that can be explored further include the following: 

1. Deployment of multiple UAVs to form an optimized communication chain 

between the command station and survey vehicles. This will extend the 

range of the survey vehicles. 
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2. The use of gliders to replace the UAV as the relay vehicles. The glider 

(Figure 42) is suggested as the endurance of the glider is longer than a 

UAV operating in a tactical environment and thus will increase the 

mission time of the survey vehicle.    

 

 
Figure 42.   Biological Soaring Gliders (NPS) 
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APPPENDIX A.    ANTENNA DATASHEETS 

 



 54

 



 55

 



 56

 
 

 
 



 57

LIST OF REFERENCES 

  
[1] D. J. Lee, K. Kam, I. Kaminer, Kragelund , S. P. and D. P. Horner, "High bandwidth 

communication links between distributed mobile robots for wireless networking using 
small UAVs via extremum seeking control," AIAA Unmanned Unlimited 
Conference, Apr 2009.  

 
[2] Cheryl Lynn Bauman, "Autonomous Navigation of a Ground Vehicle to Optimize 

Communication Link Quality," Thesis, Virginia Polytechnic Institute and State 
University, 2006.  

 
[3] Cory R. Dixon and Eric W. Frew, "Cooperative Electronic Chaining Using Small 

Unmanned Aircraft," AIAA 2007 Conference and Exhibit, 2007.  
 
[4] Kartik B. Ariyur and Miroslav Krstic, "Real-Time Optimization by Extremum-

Seeking Control. Wiley-Interscience publication," 2003.  
 
[5] Miroslav Krstic, "Extremum seeking feedback tools for real-time optimization," 

Large Scale Robust Optimization, Nov 2005. 
 
[6] C. E. Shannon, "Communication In The Presence Of Noise," Proceedings of the 

IEEE, vol. 86, pp. 447-457, 1998.  
 
[7] T. S. Rappaport, "Wireless Communications : Principles and Practice," 2nd ed.Upper 

Saddle River, N.J: Prentice Hall PTR, 2002.  
 
[8] Vladimir N. Dobrokhodov, Oleg A. Yakimenko, Kevin D. Jones, Isaac I. Kaminer, 

Eugene Bourakov, Ioannis Kitsios and Mariano Lizarraga, "New generation of rapid 
flight test prototyping system for small unmanned air vehicles," AIAA Modeling and 
Simulation Technologies Conference and Exhibit, 2007.  

 
[9]  Anonymous Wave relay QUAD radio router. www.persistentsystems.com 
  
[10] D. J. Lee, K. Kam, I. Kaminer, "High bandwidth communications links using small 

UAV via extremum seeking control," NPS Internal Report, 2008.  



 58

[11] D. J. Lee, I. Kaminer, V. Dobrokhodov and K. D. Jones, "Feature following and  
distributed navigation systems development for a small unmanned aerial vehicle 
with low-cost sensors," AIAA Guidance, Navigation, and Control Conference, Aug 
2008.  

 

 



 59

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Professor Isaac I. Kaminer 
Naval Postgraduate School 
Monterey, California 
 

4. Dr Deok Jin Lee 
Naval Postgraduate School 
Monterey, California 
 

5. Professor Knox T. Millsaps 
Chairman, Department of Mechanical and Astronautical  
Naval Postgraduate School 
Monterey, California 
 

6. Professor Yeo Tat Soon 
Director 
Temasek Defence Systems Institute 
National University of Singapore 
Singapore 
 

7. Tan Lai Poh (Ms) 
Assistant Manager 
Temasek Defence Systems Institute 
National University of Singapore 
Singapore 

 
 


